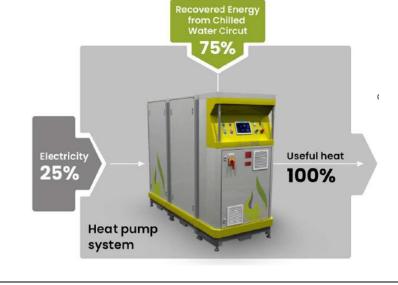
Dalrada Commercial CO₂ Heat Pump Validation

Performing Organization(s): ORNL, Dalrada, GSA

PI Name and Title: Jian Sun, R&D Staff


PI Tel and/or Email: 865-341-0078, sunj2@ornl.gov

WBS 2.2.2.94

Project Summary

Objective and outcome

Evaluate the net-zero potential of Dalrada CO₂-based heat pump in real-world and laboratory settings, including efficiency, energy saving, return of investment, maintenance

Team and Partners

Lead Organization

ORNL: Jian Sun, Jason DeGraw, Jamie Lian, Kashif

Nawaz

Teams

GSA: Joshua Banis, Jessica Higgins

Dalrada: Tony Pagnotti, Jose Arrieta

Stats

Performance Period: 10/2022 - 09/2024

DOE budget: 250 K (CBI) 150 K(ET)

Milestone 1: Select field test sites (completed 01/2023)

Milestone 2: Develop Lab testbed (ongoing 5/2023)

Milestone 3: Complete field and lab tests (not start)

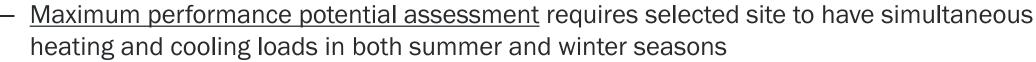
Milestone 4: Report field and lab test results (not start)

Problem Statement

Fifty percent of U.S. heating is supplied by natural gas, which contributes 36% of CO2 emissions. Decarbonizing heating systems is key to achieving net-zero emission economy by 2050. Some challenges are,

- Cost: Replacing traditional heating systems with low-carbon alternatives can be expensive.
- Energy demand: Decarbonizing heating systems may lead to increased electricity demand.
- Infrastructure: Requiring upgrades or new infrastructure investments.
- **Regulatory barriers**: these is a need for supportive policy and regulation to encourage the adoption of low-carbon heating system.

CO2-based Heat Pumps is one of potential solutions to decarbonize heating systems


Problem Statement (cont.)

Dalrada's CO₂ Heat Pump (Likido ONE)

- Environmentally more friendly (GWP = 1, ODP = 0, inflammable, Nontoxic)
- Smaller unit size due to the use of CO₂
- Better heating performance under low ambient temperature conditions
- Higher temperature for heat medium (water)
 - Enable applications for simultaneous heating and cooling (key feature)

Challenges

- System integration difficulty is of important consideration
 - Integration with non-hydronic heating system (e.g. furnace)
 - Remove excessive heating/cooling capacity when insufficient loading

- Buildings in hot-humid or mixed-humid regions, OR,
- Buildings in other regions with certain special features

Alignment and Impact

Impacts

- Saves 60-80% energy compared to conventional heating and cooling systems (i.e., boilers, electric heaters, and chillers)
- Works efficiently in extremely cold weather vs. less efficient conventional heat pumps
- Decarbonizes heat with a combustion-free process and low-GWP refrigerant, reducing emissions and energy use, and allowing highly efficient recovery of waste heat
- Compact and modular design reduces the space required in mechanical rooms and requires minimal maintenance.

How will success be measured

 The test will assess three key manufacturer claims: 60% heating and cooling savings, payback in less than 8 years, and minimal maintenance.

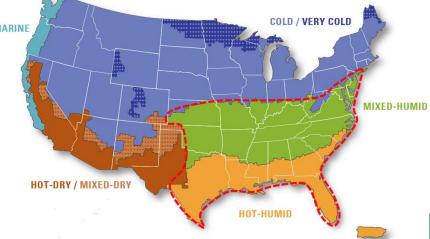
Approach: Field and Lab validation

Field validation test

- Evaluate net-zero potential in a real-world setting
- Compare the performance against specific case/system
- Difficult to establish a clean baseline to be compared against the controlled case

Laboratory validation test

- Verify technology performance under controlled environment
- Tests can be manageable to cover wide range of test conditions
- Comprehensive performance characteristics under various test conditions to support field test
- Understand how technology performance scales
- Leveraging ORNL's efforts of building laboratory test beds for water source heat pump
 - Testbed 1: Plug-in testing of off-the-shelf whole unit
 - Testbed 2: Modular test system design to enable key component testing and R&D


Approach: Field M&V Site Selection Criteria

Key Selection Criteria

	Preferable site characteristics									
Load Demand	Simultaneous and continuous cooling and heating load demand in both summer and winter Design cooling load per unit: 34 refrigeration tons Design heating load per unit: 200 kW									
Existing Cooling and Heating System	Four-pipe heating/cooling fan coil system Hydronic heating system Dehumidification and Reheat									
Historical Electricity Data	Energy consumption data of existing system for cooling and heating equipment/system									
Data Acquisition	existing data collection data for building, cooling/heating system, hot water system									
Documentation	Architectural drawing and information, e.g., existing cooling & heating system diagram									

Preferable Site:

hot-humid or mixed-humid regions

Approach: Field M&V Baseline Construction

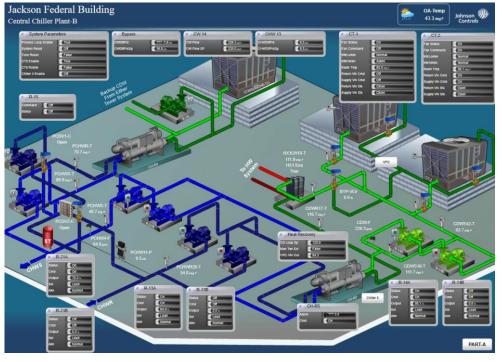
<u>Field Baseline</u> of existing heating and cooling system performance:

- The heating and cooling loads experienced by the plant based on outdoor air temperatures and other variables as needed, and
- The existing chillers' efficiencies (i.e., kW/ton),
- key operating conditions of the chiller plant (e.g., condenser water supply temperatures, chilled water supply temperatures, chiller sequencing).

<u>General reference</u>: assuming meet the efficiency requirements for heating and cooling product categories per American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2019

Progress - Test Site

Jackson Federal Building at Seattle WA

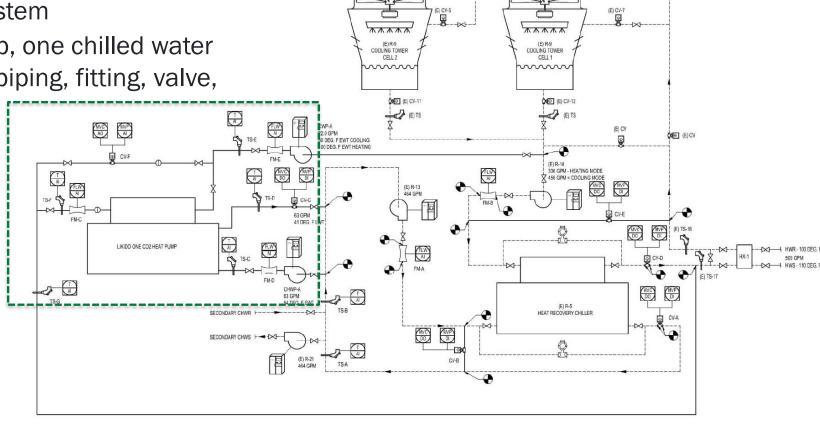

The building chilled water system consists of three variable flow water cooled chillers, 4 primary pumps with VFDs. There are 3 constant volume single cell cooling towers, and 3 constant volume condenser water pumps

- Plant cooling design load = 1350 tons
- Chiller capacity (tons): 450 per chiller

A process loop – chilled water/heat recovery system was designed to include:

- a constant volume heat recovery chiller: 194 tons
- Chilled water pump and condenser water pump.
- Cooling tower with two cells operating in lead-standby configuration

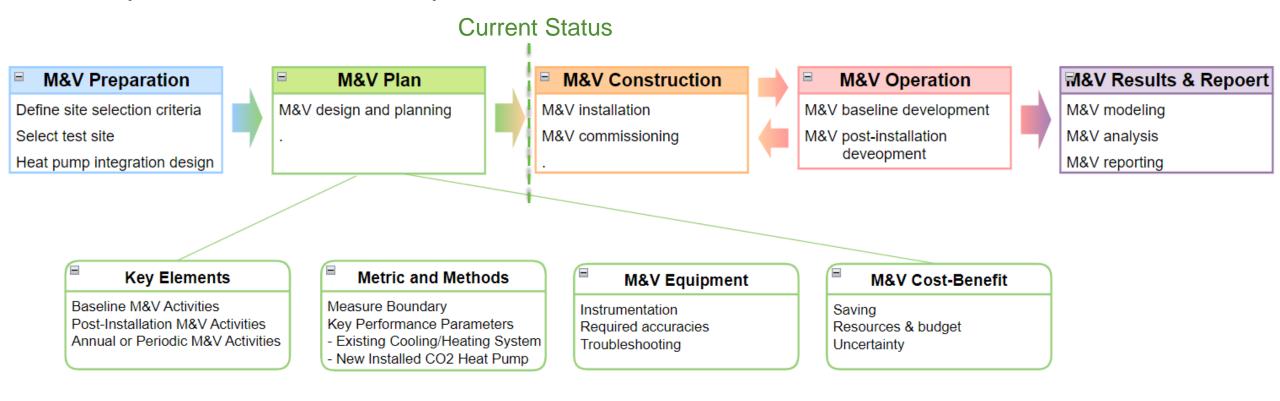
Progress - System Integration Design


System integration design

 Incorporate the Dalrada CO2 water-to-water heat pump into existing heat recovery chiller system

 Main components: a CO2 heat pump, one chilled water pump, one condenser water pump, piping, fitting, valve, sensors, controller.

Operating modes


- Heat pump-only operation
- Heat recovery chiller –only operation
- Simultaneous heat pump and chiller operation

Progress - Field M&V

Field M&V

- M&V preparation work has been completed
- M&V plan has been developed

Progress – 2nd Test Site

Jack Brooks Courthouse at Beaumont TX

The building chilled water system consists of two magnetic-bearing chillers with dedicated condenser water and chilled water pumps.

- Chiller capacity (tons): 285 per chiller
- Chilled water pump and condenser water pump.
- Cooling tower with two cells

The building heating system consists of two hot water boilers with hot water distribution pumps and a 3-way mixing valve:

- Boiler capacity (KBTU): 1246 per boiler
- Hot water pump

Simultaneous heating (reheat for dehumidification purpose) and cooling demand in cooling season

Progress - Lab M&V: Test Unit

Lab Test CO₂ heat Pump Unit: Likido loop

Key design parameters

- Heating output: 50 kW
- Hot circuit working range: 15 to 75 degree C
- Cooling output: up to 35 kW
- Chilled water temperature: 6 to 14 degree C
- COP: 5.7

Main Components

- CO₂ semi-hermetic reciprocate compressor
- gas cooler
- Economizer
- Evaporator
- Receiver, filter, valve, pressure relief

Progress - Lab M&V Testbed

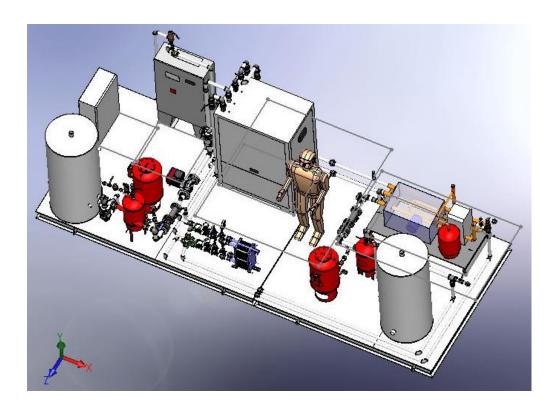
Lab testbed development for plug-in whole-unit testing (collaboration with ET program)

Main Components

Water pumps

Storage tanks

Plate and Frame Heat exchangers


Electric water heater

Expansion tanks

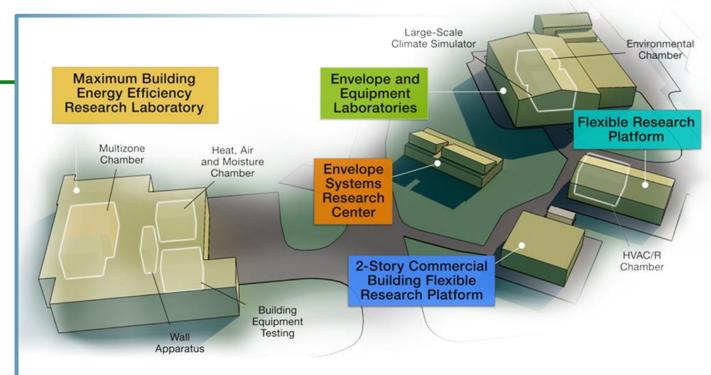
Air-cooled chiller

Test Capability

Heat capacity: 50 kW

Future Work

Field Test


- Installation of Dalrada CO2 heat pump system
- Installation of M&V instrumentation
- Conduct M&V test
- Analyze test results and prepare the report

Lab Test

- Installation of testbed and data acquisition system
- Commissioning the testbed
- Define the test plan and run the performance test
- Record the test data and
- Analyze test data and report the results

Thank you

Oak Ridge National Laboratory
Jian Sun, R&D Staff
(865)-341-0078 | sunj2@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 60,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

236 publications in FY22 125 industry partners 54 university partners 13 R&D 100 awards 52 active CRADAs

BTRIC is a DOE-Designated National User Facility

Project Execution

	FY2023		FY2024				FY2025					
Planned budget		200K				200K						
t budget		100K										
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Q1 Milestone: Site Selection												
Q2 Milestone: M&V Plan Development												
Current/Future Work												
Q3 Milestone: Lab Testbed Development												
Q4 Milestone: M&V Installation												
Q1 Milestone: M&V Data Collection												
Q2 Milestone: Lab Testing												
Q3 Milestone: Data Analysis												
Q4 Milestone: Reporting												